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Figure S1. Atomic force microscopy image with (a) 2D and (b) 3D view of QPE. 

  



 

 S5 

 

 

Figure S2. Cross-section analysis of the height and surface roughness (Rq or average deviation) of 

QPE.  
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Figure S3. Inflammability of Celgard separator before loading with liquid electrolyte.   
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Figure S4. The stress-strain curve of QPE. 
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Figure S5. Thermogravimetric analysis of QPE, Celgard separator and glass fiber separator. The 

content of TEGDME is 29.4 wt%, 77.1 wt% and 84.3 wt%, respectively. 
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Figure S6. Electrolyte leakage of Na–O2 batteries. Na–O2 batteries with (a) LE and QPE. (b) Before 

and (c) after pressing Na–O2 batteries on a piece of dry paper.  
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Figure S7. (a) TEM image of the commercial hydrophobic fumed silica. (b) SAED of SiO2. 
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Figure S8. Raman of SiO2, PVdf-HFP and polymer matrix of QPE. 
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Figure S9. Nyquist plots of the impedance spectra. 
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Figure S10. Electrostatic potential (ESP) map of the PVdF-HFP chain. 

 

The electrostatic potential (ESP) map was calculated on the basis of the PVdF-HFP segment. The 

structure of the segment was obtained from Gaussian 16 with the B3LYP functional1-3 and 6-

31+G*4-6 basis set. Then, the ESP map is plotted on the van der Waals surface (the value of electric 

density isosurface is 0.001 a.u.) of the segment by using the quantitative analysis of molecular 

surface in the open source Multiwfn package. The most favorable adsorption sites for Na+ are usually 

located at the site with the most negative electrostatic potential. For ion migration, the migration 

pathway is commonly associated with the valley of the electrostatic potential surface, where the ion 

will experience smallest energy fluctuation during migration from the most favorable adsorption site 

to another. 
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Figure S11. Pathway of Na+ ions migration along the PVDF chain. The yellow strip indicates the 

trace of Na+ ions movements during AIMD simulation. 

 

In order to confirm the results from the climbing image nudged elastic band (CI-NEB) calculation, 

the ab initio molecular dynamics (AIMD) simulation was carried on the transmission routes of Na+ 

ions. The model, same as the one for CI-NEB calculation, was put into a NVT ensemble with a fixed 

time step of 1 fs. The trace of Na+ ions movements in 1 ps reveals the transfer of Na+ ions over the F 

atoms and along the polymer chain. 
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Figure S12. Top view of charge transfer after the adsorption of Na+ ions. Yellow means electron 

accumulation and cyan means electron depletion. The yellow, grey, blue and white spheres represent 

sodium, carbon, oxygen, and hydrogen, respectively. 
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Figure S13. Charge redistribution after the adsorption of Na+ ions. Yellow means electron 

accumulation and cyan means electron depletion. The yellow, grey, blue and white spheres represent 

sodium, carbon, oxygen, and hydrogen, respectively. 
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Figure S14. The pore size distribution of QPE. The sampling number is 120. The centered pore size 

is ~30 nm.  
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Figure S15. Electrolyte penetration with (a) Celgard separator and (b) QPE. 
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Figure S16. Voltage profiles of Na-Na symmetric cells with Celgard separator or QPE. 
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Figure S17. The CV curves of quasi-solid-state Na–O2 battery in argon atmosphere at 0.1 mV s−1. 

 

The CV curves of quasi-solid-state Na–O2 battery in argon atmosphere indicate that the upper and 

lower limits of batteries’ operating voltage are 1.1 and 5.0 V, respectively. The stable window is a 

potential range versus Na+/Na, in which the electrolyte will not be oxidized and Na ions will not be 

inserted into carbon electrode. Quasi-solid-state Na–O2 batteries can operate steadily within this 

voltage window. 
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Figure S18. Voltage profiles of Na–O2 battery with glass fiber separator with a cut-off capacity of 

1000 mAh g−1. 
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Figure S19. Voltage profiles of Na–O2 battery with Celgard separator with a cut-off capacity of 

1000 mAh g−1. 
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Figure S20. The median discharge/charge voltage gap at various current densities. 
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Figure S21. Discharge profiles of Na–O2 batteries with carbon paper and carbon paper + Super P. 
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Figure S22. Discharge profiles of Na–O2 batteries with carbon cloth and carbon cloth + Super P. 
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Figure S23. Contact angle measurement of QPE thin film toward water. 
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Figure S24. The optical images of Na metal covered with Celgard separator/QPE after placed in (a) 

O2 and (b) air atmosphere for 30 minutes. 
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Figure S25. Raman of Na metal separated by Celgard separator/QPE from (a) oxygen and (b) air 

atmosphere, respectively. 

We encapsulated the metal Na in the battery shell with the hole sealed by QPE or Celgard on the 

cathode side, and placed it in oxygen/air for 30 min. The surface compositions of Na metal  were 

detected by Raman spectroscopy. As shown in Figure S24a, Na metal covered by Celgard separator 

shows the stronger Raman peaks around 235 cm−1 and 300 cm−1, corresponding to Na2O and NaOH, 

respectively.7 On the contrast, the intensity of Raman peaks for Na metal covered by QPE is much 

weaker (Figure S24b). Additionally, NaOH is observed on the surface of Na metal placed in the 

oxygen atmosphere. It can be attributed to the trace water, which commonly exists in oxygen and is 

hard to be removed completely.  
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Figure S26. Photograph of (a) aluminum foil on a film applicator and (b) polymer solution on the 

aluminum foil. 
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Figure S27. Photographs of (a) Na foil anode, (b) QPE, (c) carbon paper and (d) Super P/carbon 

paper. 
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Figure S28. The voltage profile of the large-scale pouch-type Na–O2 battery with QPE. 
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Figure S29. Photograph of the assembled large-scale pouch-type Na–O2 battery. 

 

The energy density of the large-scale pouch-type Na–O2 battery is 335 Wh kg−1, which is based on the 

total mass of the whole battery and obtained by the formula of 636.1 mAh × 2.0 V/3.8 g. 

  



 

 S33 

 

 

Figure S30. The morphology evolution of the air cathode. The corresponding SEM images of Super 

P cathode at pristine state, discharge state and recharge state. Scale bar: 1 μm. 
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Figure S31. XRD patterns of pristine, discharged and recharged air cathodes. 
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Figure S32. Raman spectra of pristine, discharged and recharged air cathodes. 
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Figure S33. Photograph of bendable carbon cloth after spraying Super P carbon. 
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Figure S34. Fatigue test of flexible QPE-based Na–O2 battery. 
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Figure S35. Voltage profiles for flexible QPE-based Na–O2 battery. 
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Table S1. Comparison of the electrochemical performance between liquid-based Na–O2 batteries in 

recent works and our work. 

State Cathode 

Charge 

terminal 

voltage 

Coulombic 

efficiency 

Capacity&Cycle 

performance 
Flexibility Refs 

Liquid 

electrolyte 
Carbon paper 3.0 V ~90% 

0.1 mAh/cm2, 

0.1 mA/cm2, 

60 cycles 

No 8 

Liquid 

electrolyte 

Co3O4@carbon 

textiles 
~3.9 V 100% 

500 mAh/g, 

100 mA/g, 

62 cycles 

No 9 

Liquid 

electrolyte 
CNT@Co3O4 4.5 V 90-100% 

300 mAh/g, 

300 mA/g, 

21 cycles 

No 10 

Liquid 

electrolyte 
CoB/CNTs ~3.7 V 100% 

2000 mAh/g, 

100 mA/g 

74 cycles 

No 11 

Liquid 

electrolyte 
Pd/ZnO/C ~2.9 V 100% 0.15 mAh/cm2, 

9 cycles 
No 12 

Liquid 

electrolyte 
Carbon paper 4.4 V 100% 

1000 mAh/g, 

500 mA/g, 

50 cycles 

No 13 

Liquid 

electrolyte 
CNTs — — 

1000 mAh/g, 

100 mA/g, 

87 cycles 

No 14 

Liquid 

electrolyte 
NCNT ~4.25 V 100% 

300 mAh/g, 

300 mA/g, 

22 cycles 

No 15 

Solid-state 

electrolyte 
— — — — No 16 

Quasi-

solid state 

electrolyte 

Super P 3.0 V ~97% 
1000 mAh/g, 

200 mA/g, 

80 cycles 

Yes 
This 

work 
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